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Abstract

The deployable structures presented in this work are bi-stable in the sense of being self-standing and stress-free when
fully closed or fully deployed, but exhibit incompatibilities between the member lengths at intermediate geometric
configurations during the deployment process, which lead to the occurrence of second-order strains and stresses
resulting in a snap-through phenomenon that “locks” the structures in their deployed configuration. Until now the
geometric shapes that were possible in the deployed configuration were only flat or curved with constant curvature. This
limitation is addressed in the present paper by proposing a geometric design methodology for deployable arches of
arbitrary curvature, accounting also for the discrete joint size, and applying it successfully for the geometric design of a
semi-elliptical arch. The arch is then modeled with finite elements, and a geometrically non-linear analysis is performed
in order to verify the deployability feature. Further verification is provided by the construction of a small-scale physical
model. A preliminary structural design indicates the overall feasibility of the arch for short to medium spans and light
loads.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Deployable structures are prefabricated space frames consisting of straight bars linked together in the
factory as a compact bundle, which can then be unfolded into large-span, load bearing structural shapes by
simple articulation. Because of this feature they offer significant advantages in comparison to conventional,
non-deployable structures for a wide spectrum of applications ranging from temporary structures to the
aerospace industry, being mainly characterized by their feature of transforming and adapting to changing
needs.
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Because of their numerous advantages, deployable structures have been investigated, designed and
constructed by many engineers both for earth and space applications (Pinero, 1962; Zeigler, 1984; Rhodes,
1984; Merchan, 1987; Miura and Furuya, 1988; Escrig et al., 1989; Kwan and Pellegrino, 1991; Kuznetsov,
1991; You and Pellegrino, 1993; Pellegrino and Guest, 2000; You, 2000; Escrig and Brebbia, 2000; Furuya
and Kawasaki, 2000; Kawaguchi and Kondo, 2000; Langbecker and Albermani, 2001). The concept as well
as the geometric and structural characteristics of the type of deployable structures considered here are the
product of research work carried out since 1985 at the Massachusetts Institute of Technology, the Technion
in Israel and the National Technical University of Athens (Gantes, 1991; Gantes et al., 1991; Gantes et al.,
1994a; Gantes, 2000a), that succeeded in converting the primary ideas that were suggested earlier
(Krishnapillai and Zalewski, 1985) to a feasible type of structure. The main findings of this work are in-
cluded in a recent book (Gantes, 2001).

A fundamental design requirement of the structures investigated here is that they have two states in
which they are self-standing and stress-free, namely when they are fully closed or fully deployed, hence they
can be called bi-stable. However, at intermediate geometric configurations during the deployment process
incompatibilities between the member lengths lead to the occurrence of second-order strains and stresses
resulting in a snap-through phenomenon that “locks” the structure in its deployed configuration. The
structural response during deployment is, hence, characterized by geometric non-linearities, and simulation
of the deployment process is, therefore, a very important problem requiring sophisticated finite element
modeling (Gantes, 2000a). The material behavior, however, must remain linearly elastic, so that no residual
stresses reduce the load bearing capacity under service loads (Gantes, 1996).

From a structural point of view, deployable structures have to be designed for two completely different
loading conditions, under service loads in the deployed configuration, and during deployment. The
structural design process is very complicated and requires successive iterations to achieve some balance
between desired flexibility during deployment and desired stiffness in the deployed configuration (Gantes
et al., 1993a,b, 1994b; Gantes, 1997).

From a geometric point of view, the whole idea of this type of deployable structures is based on the so-
called scissor-like elements (SLEs), pairs of bars connected to each other at an intermediate point through a
pivotal connection which allows them to rotate freely about an axis perpendicular to their common plane
but restrains all other degrees of freedom, while, at the same time, their end points are hinged to the end
points of other SLEs. Several SLEs are connected to each other in order to form units with regular
polygonal plan views, for example triangular, square, or hexagonal units like the ones shown in Fig. 1. The
sides and radii of the polygons are SLEs. These polygons, in turn, are linked in appropriate arrangements
constituting deployable structures, which are either flat or curved in their final deployed configuration
(Fig. 2).

Geometric design is performed according to a set of geometric constraints resulting from the require-
ment of zero stresses at the two extreme configurations (Gantes, 1993; Gantes et al., 1993c,d, 1997). Stress-
free implies undeformed; therefore, the straightness of the bars in the deployed configuration is the starting
point for geometric design. Several constraint equations emanate from this condition. The way to derive
these equations is by looking at the development of adjacent scissor-like elements on a common plane and
applying basic geometric and trigonometric rules. The additional functional requirement that has to be
satisfied through geometric design is a stress-free state in the folded configuration. By translating this also
into a demand for straightness, one can obtain the so-called deployability constraint (Fig. 3), which requires
that the sums of the lengths between pivot and end node of the bars of SLEs that are connected to each
other are equal.

The geometric constraint equations are derived by applying the above rules for all scissor-like elements
of a unit, taking also symmetry or other special conditions into account. The formulation of a design
procedure based on these constraint equations must be preceded by the choice of design parameters. Such
parameters are usually some external dimensions of the units, which are often imposed by architectural
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(a) Triangular unit

p=60°

(c) Hexagonal unit

Fig. 1. Plan views (left) and perspective views (right) of typical polygonal deployable units.
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(b) Curved with constant curvature

Fig. 2. Deployable structures in their deployed configuration.

requirements. The other quantities that define the geometry, such as member lengths or angles between the
members in the deployed configuration, are the unknown variables. Following this approach, one ends up
with a system of simultaneous non-linear equations that have to be solved numerically using an iterative
algorithm such as the Newton—-Raphson method.
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atb=c+d

Fig. 3. Deployability constraint.

This geometric design approach is initially followed at a polygonal unit level. Then, the additional
constraints for deployment compatibility between adjacent units, and how this affects the overall geometric
design process, must be accounted for. However, the snap-through-type deployable structures that had
been designed so far according to this approach suffered from a significant limitation. The geometric shapes
that were possible in the deployed configuration were only flat or curved with constant curvature (Fig. 2).
Other shapes, which might be structurally more efficient or architecturally more desirable, could not be
achieved by using these units.

In the present paper this limitation is addressed by unifying the two stages of the approach, namely
design of individual units and then connectivity between adjacent units, into one (Konitopoulou, 2001;
Gantes and Konitopoulou, 2002). Thus, the desired final shape of the deployed structure is taken into
account during geometric design of individual units. This increases the order of the resulting system of
simultaneous equations, and thus the computational effort, but seems to be the only way to design snap-
through-type deployable structures of arbitrary curvature. In addition, individual polygons are no longer
necessarily regular and identical to each other.

The geometric constraints according to this approach, proposed earlier by Konitopoulou (2001) and
Gantes and Konitopoulou (2002), are extended here in order to take the discrete joint size into account. The
steps of a corresponding systematic geometric design methodology are listed in detail. This methodology is
applied successfully for the geometric design of a semi-elliptical arch. A small-scale physical model of the
arch is constructed in order to demonstrate the correctness of the proposed approach. The arch is then
modeled with finite elements, and a geometrically non-linear analysis is performed in order to verify the
deployability feature. Extension of the methodology to other geometric shapes does not appear to present
any additional conceptual difficulties.

2. Geometric constraints for elliptical deployable arch

The proposed approach is applicable for the geometric design of any arch whose axis is described by an
equation of the type:

f(x,y)=0 (1)

For the sake of clarity and without loss of generality, the approach will be demonstrated for the case of a
semi-elliptical arch. Consider an ellipse that will be the axis of the arch, shown in Fig. 4 and described by
the equation:

2 )P

Sl (2)
Furthermore, consider two more ellipses, having the same axes lengths a, b as the previous one, that are
placed on both sides of the original one (Fig. 5) at a specific distance that will be defined later on. Thus, the
upper surface of the elliptical arch is created. Then, this surface is divided into consecutive segments, having
the same arch length (Fig. 6). Because of the elliptical shape, the chords of the respective arch segments are
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axis of arch

Fig. 4. Axis of elliptical arch.

¥  axis of arch

Fig. 5. Upper surface of elliptical arch.

Fig. 6. Sub-division of upper surface of elliptical arch in sub-planes.

of different length, called g,. The distance g; between the ellipses placed on both sides of the axis is defined
as equal to the average of all g,. With the subdivision of the upper elliptical surface, an inscribed convex
polyhedron is created. Each sub-plane will constitute the top view of a single structural deployable unit.
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Fig. 8. Location of second SLE.

Thus, the geometric design of the elliptical arch begins with the first structural unit. Some geometric
parameters, such as the total span of the arch and the size of the individual unit are known, because they are
imposed by architectural requirements. Assuming that the dimensions of the elliptical surface are known,
the coordinates of points 4; and B; (Fig. 7), defined as the intersection of the two ellipses with the xz plane,
can be chosen.

If S is the center of the ellipse, then the points 4, and B, belong to lines S4,; and SB; and are at distance /4,
from A, and By, respectively, where /4 is the thickness of the structural unit (Fig. 7). Points C; and D, are on
the elliptical surface and more specifically on the two edge ellipses. Their distance from B; and A4,
respectively, is g, (Fig. 8). Similarly, points C, and D, are at distance 4, from C; and D, respectively. The
point Oy, which is the peak of the polygonal unit, is on the axis of the elliptical arch and more specifically in
the middle of the unit’s arch segment (Fig. 9). The same holds for point O,, and the distance between O,
and O, is k3. The dimensions %, and A3 are not design parameters, but are derived from the solution of the
geometric design problem for the structural unit. Thus, the solution of the structural unit starts with the
coordinates of points 4, 4, By, By, Cy, Dy, O; and S as known parameters. The coordinates of points C;,
D,, and O, are unknown. The complete first structural unit is shown in Fig. 10.

2.1. Geometric constraints assuming idealized joints

For the geometric design of the elliptical arch several different types of SLEs are used, contrary to the
case of curved structures with constant curvature. In particular, the outer planes of the unit 4,4,B,B, and
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Fig. 10. First basic square unit.

C,C,D\ D, are determined by symmetrical but different to each other SLEs, while the planes 4,4,D,D, and
B1B,C,C, are defined by non-symmetrical SLEs, which are the same for both of them (Fig. 11). Similarly,
the inner planes O;0,4,4,, 0,0,B,B,, 0,0,C,C, and O,0,D, D, are illustrated in Fig. 12. Assuming that all
the above are known, the angles ¢, ¢,, @3, ©1, W2, Y, Ya, Y5, Yu, s, Y and the lengths L, L,, which are
defined in Figs. 11 and 12, can be derived. L; and L, are found as the distances between two points with
known coordinates, for example:

Ly = \/(X()l —xa1)’ + (o1 —yn)’ + (zo1 — za1)’? (3)
For the angles the cosines law is used. For example angle ¢, is obtained from the equation:
(41B1)" = (41S)* + (B1S)* — 2(4,5)(B,S) cos ¢, (4)

In order to derive the geometric constraints for the units, let us consider the development of two SLEs on a
common plane. Two of them are shown indicatively in Fig. 13. The following equations can be written for
this problem:

Foldabillity constraints:

e Between outer SLEs:
el +fi=e+f3 extfHh=e+fi (5)
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Fig. 11. Outer SLEs.

e Between inner SLEs:
a) + b] =a, + b2
e Between inner and outer SLEs:

e+ f1=c +d, ex+hHh=c+d

Sines law:

e For the outer SLEs:
ey siny, e, siny, e; siny; ey siny,
fi  sing’ fr  sing’ f5 sing’ fi  singg
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Fig. 12. Inner SLEs.

e For the inner SLEs:

a sin 91 Cq sin 51 a) sin 92 C sin 52 (9)
b, sino’ di  sin{;’ b, sinoy’ d, sin{,

Length projections in the radial direction:

e For the outer SLEs:

ejcose + ficosy, = hy, e,co0s8& + frc08y, = hy (10)
e3cosées + f3cos )y = hy, €4C0Seq+ f1CO8Yy = Ny

e For the inner SLEs:
aicos oy + by cos 0 = hs, cicosl; +dycosd; = hy (n

a> cos oy + by cos 0, = hs, 08¢, +d>cosdr = hy
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Fig. 13. Adjacent outer and inner SLEs.

Length projections in the tangential direction:
e For the outer SLEs:

. ety . (&t
211 sin (%) = g1, 25 sin <%) = g1, f3cos(y —73) + facos(y — 74) = &2

(12)
e For the inner SLEs:
bycos(¥; — 0y) + cicos(yy — &) = Ly, bycos(s — 05) + crcos(Wg — &) = Ly (13)
Concurrency of lines 0,0,, A1A», B\B;:
&+ 73 =&+ o 40y =01 + {4, o+ 0, = 0, + (5, 7t e = e (14)

Vo + @y = &, Y4+ @3 = &3, {1+ =, 4w =

The above equations constitute a system of 34 equations for 34 unknowns, the 16 member lengths (e, f1, e,
f27 es, _f39 6494](;" ai, bl> Ci, dls a, b27 C2, dZ)s the 16 angles (819 V1, &2, ’YZa &3, y3a &4, V4> oy, 015 515 gls %2, 02a 527 4’2)
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and the unit dimensions #,, #3. As already mentioned, the structural thickness #; is a known design
parameter. As far as the solution of the above system is concerned, Egs. (8a), (10a), (12a) and (14d) are
linearly independent and they can be solved as a 4 by 4 system. Since all coordinates of the nodes of the first
SLE (4,4,B,B,) are known, the lengths e, f; and the angles ¢;, y, can thus be derived. Then, a system of 30
non-linear equations for 30 unknowns remains to be solved numerically.

2.2. Geometric constraints taking joint dimensions into account

The derivation of geometric constraints and formulation of geometric design procedures in the previous
section was based on the assumption that the hubs are ‘perfect’, dimensionless hinges. In reality, however,
they have some discrete dimensions, which should be taken into account during geometric design, in order
to avoid geometric non-fit of the members, assembling problems, and violation of the desired stress-free
state in the folded and deployed configuration. The type of circular joints with radius r», used in our
experimental models, is shown in Fig. 14. It should be noted that the angles between planes of adjacent
SLEs remain unchanged during the deployment process, thus the hinges only have to accommodate axial
forces of the members converging into them.

In order to derive the geometric constraints with discrete joint dimensions, we consider again the
development of outer (Fig. 15) and inner (Fig. 16) SLEs on a common plane. Furthermore, we consider the
development of adjacent SLEs on a common plane. The geometric constraints differing from those that
were derived earlier for idealized joints concern the length projections in the tangential direction:

e For the outer SLEs, Eq. (12) should be replaced by:

211 sin(%)—&—bcos%:gl, 215 sin (w—Tyz)—i—hcos%:gl

(15)
f3cos(Yy — 73) + facos(Py — 7)) +r(siny +siny,) = g
e For the inner SLEs, Eq. (13) should be replaced by:
by cos(; — 01) + ¢y cos(Wy — () + r(sinyy +sinyy,) = L, (16)

bycos(s — 0,) + crcos(Yg — (o) + r(sin s +sinyyy) = Ly

Fig. 14. Real joint and corresponding model.
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Fig. 15. Outer SLEs accounting for joint dimensions.

3. Geometric design

The detailed application of the proposed design methodology for each single unit consists of the fol-
lowing steps:

(i) The coordinates of 4; and B; are considered as known. These points, as illustrated in Fig. 7,
belong to the elliptical surface and more specifically to the edge ellipses on both sides of the axis.
The x coordinate of 4, By is equal to the dimension a of the ellipse and the y coordinate is equal
to zero.

(i1)) The point S (0,0,0) is the center of the ellipse.

(iii) The coordinates of C; and D, are derived by the subdivision of the elliptical surface and belong to the
edge ellipses.
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Fig. 16. Inner SLEs accounting for joint dimensions.

(iv) The point O, belongs to the elliptical surface and more specifically it is located in the middle of the arch
of each single unit. The coordinates of O, are derived from the following system of two simultaneous
equations:

2 2
Xor , Yo _ _ A
612 + b2 = 17 Yo1 = tan (5) - X0o1 (17)

where 4/2 is the angle of direction of O, (Fig. 9).
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(v) Considering all the above as known parameters, the values of lengths L;, L, and angles ¢, ¢,, @3, o,
W2, Y1, Yoy Y3, Yu, Ys, Y can be derived by equations similar to (3) and (4).

(vi) Then, the values of lengths e, f; and angles ¢;, y, are derived from the linearly independent simulta-
neous equations (8a), (10a), (14d) and (15a).

(vii) Next, the system of 30 non-linear simultaneous equations (5a,b), (6), (7a,b), (8b—d), (9a—d), (10b-d),
(11a—d), (14a—c,e-h), (15b,c), (16a,b) is solved, in order to obtain the remaining unknown lengths e,,
f2, 63,f3, ey, f4, ap, bl, Cl, dl, aj, bz, Cy, dz, the angles &2, Vs €35 V35 €45 Vg5 1, 91, 51, Cl, 0o, 02, (32, Cz and
the parameters h,, 3.

(viii) Considering the coordinates of the upper nodes and the respective thickness of each unit as known,
the coordinates of the lower nodes can then be calculated.

(ix) Finally for each point 4;, B;, C; and D; the coordinates of the discrete joints 4;,, B;,, Ciy and D;,, shown
in Fig. 17, can be obtained by solving corresponding systems of three simultaneous equations, for
example for point Ay,:

Xgla Vala Zata 1
X4l Va1 Zal 1
Xot  Yo1 Zoi 1

Xs Vs zZs 1

Ly (Xa1a —xa1) + Mg (Vara — Y1) + 11 (Za1a —241) =0

r= \/(XAl *xAla)z + (v *J’Ala)z + (201 — ZAla)2

The first of Eqs. (18) specifies that 4,, belongs in the plane defined by points 4;, O; and S. Eq. (18b)
indicates that 4, belongs in the plane perpendicular to line 4,5 at point 4;. The values £, m4, ny are
the known cosines of direction of line 4,S. Finally, Eq. (18c) denotes that the distance between 4, and
A; is equal to the known radius r of the circular node.

The initial values needed for the iterative solution of the 30 simultaneous non-linear equations can be
obtained by starting with the geometric design of a semi-circular arch (¢ = b), and then reducing radius b
gradually and using the solutions of the previous step as trial values for the next step.

4. Application

The above process has been applied for the geometric design of the semi-elliptical arch shown in Fig. 18,
with a span of 13.622 m, a height of 6.130 m and a structural thickness of 0.811 m at the two supports. The
main objective of this exercise was to confirm the correctness of the geometric constraint equations and the
proposed geometric design approach, and to verify the deployability potential of a deployable arch with
varying curvature. Design of an optimized real structure, able to withstand realistic loads was not sought at
this stage, thus several simplifying assumptions have been adopted. Hence, finite element analysis of the
deployed arch under service loads was only performed for reasons of completeness and in order to show
that the resulting deflections and member forces are of an order of magnitude acceptable for real appli-
cations. Structural optimization in order to achieve a better balance between the response during
deployment and under service loads will be carried out in future work. The deployability feature of the arch
has been verified both by constructing a small-scale physical model and by finite element analysis. This
example is presented in detail next.
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Fig. 17. Adjacent outer and inner SLEs accounting for joint dimensions.

4.1. Geometric design

Assuming that the radii a, b of the ellipse are known (a = 6.811 m, b = 0.90 x 6.811 = 6.130 m), the
length of the semi-elliptical arch is found equal to 20.3418 m. The arch is divided into eight segments with
the same length, 2.54272 m. The length of each respective chord is different and more specifically equal to
2.52103, 2.52479, 2.52855 and 2.53049 m for the first, second, third and fourth unit, respectively. This value
is the g,-parameter for each unit. The g;-parameter is common for all units and equal to the average of the
four g, (g; = 2.52621 m).

In order to obtain initial values for the numerical iterative solution of the geometric constraint equa-
tions, the geometric design of a semi-circular arch is performed first. The arch consists of eight units and the
values of radius and structural thickness are R = 6.811 m and #; = 0.811 m, respectively. Then, the radius b
of the ellipse is gradually reduced in steps of 2% up to 10%, in comparison with the radius a. The geometric
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Fig. 18. Semi-elliptical arch.

quantities of each step are used as initial values for the iterations of the next step. Considering also a hub
radius » = 0.12 m, the geometric design of the desired arch of semi-elliptical shape is achieved. The per-
tinent geometric quantities of the four units are listed in Table 1.

4.2. Physical model

The geometric design methodology has been verified through the construction of a physical model in
scale 1:20, shown in Fig. 19 in some successive deployment stages. The members of the arch are made of
straws, the outer hubs of circular wire rings and the pivotal connections of metal pins. One very interesting
issue arising for the deployment of such structures, namely how the difference in geometry between adjacent
units affects the way and the sequence in which the individual units undergo snap-through and how they
interact during that process, can be qualitatively observed by means of this model. “Flatter” units, char-
acterized by by /a; and b,/a, ratios close to 1, are softer and tend to buckle first. This issue will be further
explored in future work, and will be utilized to control better the deployment intensity, and to optimize the
overall design.

4.3. Material and cross-section characteristics

The selection of suitable materials and cross-sections for the members must be such that several design
objectives are met. Namely, the stiffness of the deployed arch under service loads must be satisfactory, with
specific deflection limits depending on the intended use. This can be achieved by providing sufficient
intensity of snap-through during deployment, but without requiring too much energy or allowing material
non-linearities. At the same time, a lightweight material improves handling and transportation.

In order to satisfy all the above requirements, several iterations were needed. They resulted in choosing
low-density polyethylene (Young’s modulus £ = 150 MPa, yield stress g, = 20 MPa) for the outer SLEs,
and acrylic (E =80 MPa, g, =15 MPa) for the inner SLEs. The hubs are made also of low-density
polyethylene. As far as the cross-sections of the members are concerned, the outer SLEs use a rectangular
hollow section of 150 mm by 60 mm with a 15 mm wall thickness and the inner SLEs, which are mainly
responsible for controlling the snap-through intensity, a rectangular hollow section of 110 mm by 50 mm
with a 15 mm wall thickness (Fig. 20).

Based on the above selections of materials and cross-sections, the deployability of the structural unit was
feasible, but the response of the structure under some service load combinations was not satisfactory due to
large deflections under vertical loads. This was solved by placing connection rods between the upper and
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Table 1
Geometric quantities of the prototype arch
First unit Second unit Third unit Fourth unit

g1 m 2.52621
Jo) 2.52103 2.52479 2.52855 2.53049
A rad 0.374887 0.38409 0.399579 0.41224
o 0.366736 0.372327 0.386089 0.40034
[0 0.372327 0.386089 0.40034 0.406418
03 0.368443 0.377185 0.391844 0.403778
o} 0.261464 0.266665 0.276918 0.286327
(o 0.263409 0.271454 0.281865 0.288429
W, 1.34646 1.28854 1.28499 1.33261
W, 1.42669 1.47586 1.46476 1.4052
Vs 1.51961 1.566 1.57154 1.537
[/ 1.36052 1.30893 1.29314 1.31826
Ws 1.46175 1.43073 1.44141 1.48434
Vs 1.41643 1.43941 1.41832 1.36882
L, m 1.79298 1.79833 1.79999 1.79517
L, 1.78748 1.78282 1.78183 1.78696
h 0.811 0.816955 0.795216 0.769353
hy 0.816955 0.795216 0.769353 0.756161
h3 0.307553 0.336339 0.330884 0.265407
e 1.06408 1.06167 1.05685 1.05244
A 1.22187 1.22318 1.21925 1.21465
e 1.06167 1.05685 1.05246 1.05074
1 1.22318 1.21925 1.21464 1.21227
e3 1.0726 1.03506 1.0249 1.03953
fa 1.21335 1.24978 1.2512 1.22756
e 1.05359 1.08391 1.08449 1.06183
fa 1.23125 1.19218 1.1826 1.20118
a 0.403431 0.41756 0.420026 0.408255
by 0.456396 0.499245 0.502075 0.406734
¢ 1.18608 1.15897 1.15589 1.25091
d, 1.09986 1.12588 1.12021 1.01618
a 0.408081 0.403212 0.403327 0.400925
b, 0.451747 0.513592 0.518775 0.414064
& 1.19916 1.12059 1.11178 1.22747
dy 1.08568 1.1555 1.15531 1.03554
&1 rad 1.39784 1.39792 1.41385 1.43193
7 1.03111 1.02559 1.02776 1.03159
& 1.39792 1.41385 1.43193 1.4406
V2 1.02559 1.02776 1.03159 1.03418
& 1.37647 1.46606 1.49799 1.46648
73 1.04986 0.967822 0.955948 1.00197
En 1.41831 1.34501 1.34779 1.40575
Va 1.00802 1.08888 1.10615 1.0627
oy 1.37184 1.43425 1.44897 1.23639
0, 1.04817 0.976598 0.97929 1.24155
o1 1.30963 1.24326 1.25621 1.52788
4 1.11037 1.16758 1.17205 0.950064
o 1.34154 1.52681 1.55949 1.28981
0, 1.07524 0.901606 0.890084 1.18676
123 1.33865 1.17306 1.17195 1.47519

G 1.07813 1.25535 1.27762 1.00139
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Fig. 19. Successive deployment stages of the physical model.

the lower nodes of each unit (Fig. 21a), thus enhancing the stiffness of the deployed structure. This
intervention violates the design target of having exactly the same structural system for the folded and the
deployed structure (with the exception of different boundary conditions), and increases slightly the time and
effort required for deployment and disassembling. But the intervention related to the placement of the
connection rods is considered minimal and is still a good compromise between ease of deployment and
desired structural characteristics.
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| S0mm

150mm
15mm

(b) Internal posts at center nodes

Fig. 21. Means to increase stiffness of the deployed arch.

In cases of maximum snow load there were further violations of the serviceability limits (deflections
smaller than span length over 250), that can be prevented by supporting (for example by means of vertical
posts) the two lower nodes at the center of the arch (Fig. 21b), thus reducing deflections by 50%. This will
be needed only if the structure is to be used in climates justifying such loads, and only during the rare events
when such loads will be indeed realized. Even then, only serviceability and not strength will be violated if
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the supporting posts are not put into place. Thus, the undesirable presence of the posts in the interior of the
structure will be needed only in very few cases.

Hence, it is considered that the structure demonstrated a satisfactory behavior during both stages of
analysis that will be described next.

4.4. Finite element analysis

For the analysis the finite element program MSC/NASTRAN 4.0 for Windows was used. The members
of inner and outer SLEs were modeled with beam elements, and the hubs were modeled as equivalent grids
of beam elements. The static analysis of the structure consisted of two stages:

(1) Linear analysis of the arch in the deployed configuration, in order to obtain displacements and stresses
under service loads.

For this analysis the arch was considered pinned at both ends. The loads that were taken into account
for the linear analysis are the dead weight of the structure, snow with 0.3 m thickness and a 0.5 kN/m? wind
pressure, using tributary areas to distribute them on the individual arch members. Indicative results of
deformation (maximum total translation 23.5 mm) and axial forces in the members (maximum tension
13.69 N, maximum compression 14.09 N) are shown in distorted scale in Fig. 22 for the case of simulta-
neous action of dead, snow and wind loads. The maximum stresses are well below the yield stresses of the
respective materials, while the maximum deflections under dead loads are marginally within the service-

(a)

Undeformed (thin dotted line) and deformed (thick continuous line) configuration

. |
vl
b i
(b) g

Member axial forces

Fig. 22. Deformation and axial forces for load combination (dead + snow + wind).
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ability limits of span length over 250 without vertical posts, but require the posts in order to satisfy ser-
viceability for snow and wind loads.

(i1) Non-linear analysis of each single structural unit, in order to verify deployability and to compute stresses
during deployment as well as the required deployment load.

Taking advantage of the fact that deployability of the whole arch was verified by means of the physical
model, numerical deployment simulation was carried out for each individual unit separately, as deployment
stresses are deformation-induced and can be predicted very accurately in this manner (Gantes, 2001).
During this process the members are subjected to axial forces and bending moments and, thus, they develop
normal longitudinal stresses. The lower center node of the unit was assumed as pinned and a controlled

Fig. 23. Successive deformed configurations as obtained from finite element simulation of dismantling.
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displacement was imposed on the upper center node, in the direction defined by the upper and lower center
nodes. All other nodes were free except for prevention of rigid body rotation. Full Newton—Raphson
iterations were carried out in 60 steps with 150 maximum iterations per step. Dismantling was simulated
instead of deployment due to improved performance of the non-linear iterative algorithm.

Fig. 23 shows successive dismantling stages as obtained from the above analysis. The deformed con-
figuration is shown with thick continuous line and the undeformed one with thin dotted line. Fig. 24
illustrates the corresponding non-linear load—displacement path. The quantity J in the horizontal axis is the
relative vertical displacement between upper and lower center nodes, while the load P in the vertical axis is
the external load required for deployment, obtained as the reaction corresponding to the imposed dis-
placement. The snap-through nature of the response is clearly indicated.

The maximum value of the required deployment load, obtained from numerical analysis as equal to
approximately 5 kN, indicates the need for mechanical equipment in order to realize deployment. This is
justified, taking into account the size of the structure and the significant service loads employed for analysis
in the deployed configuration, however, a more favorable selection of materials, member cross-sections and
required deployment loads is expected to be possible by means of structural optimization (Gantes, 2000a,b).

The maximum stresses that develop in the members of inner SLEs during deployment are approximately
equal to 10.5 MPa, which is 70% of the yield stresses of 15 MPa. The outer SLEs are not stressed sig-
nificantly during deployment, as expected also from previous experience with this type of structures
(Gantes, 2001). Thus, the design criterion—that the material remains within the elastic range during
deployment—is satisfied.

An interpretation of Fig. 24 can also lead to a better understanding of the bi-stable nature of deployable
structures of this type. The geometric incompatibilities between member lengths during the deployment
process leads to a highly non-linear behavior and ultimately to snap-through. The strain energy stored in

5000

p (N)

4000

NIV
ol ,
wlf /

D 0.1 0.2 \\ 0.3 0.4 /5 0.6
-1000
-2000 \\ /

-3000

Fig. 24. Load-displacement path as obtained from finite element simulation of dismantling.
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the members prior to snap-through and released afterwards, acts as a form of prestressing and locks the
structure in its deployed configuration. Its stiffness is further enhanced by employing in the deployed
configuration different boundary conditions from those during deployment (and in some cases additional
members as well), so that unlocking is prevented under service loads. Dismantling is possible by removing
the additional boundary conditions (and the additional members) and applying opposite loads to those
needed for deployment. Thus, two distinct, stable phases exist, the folded and the deployed one, each
characterized by different geometry, loading and boundary conditions.

5. Summary and conclusions

Deployable structures that are self-standing and stress-free when fully closed or fully deployed but ex-
hibit incompatibilities between the member lengths at intermediate geometric configurations during the
deployment process, which lead to second-order strains and stresses and a snap-through phenomenon that
“locks” the structures in their deployed configuration have been investigated. A geometric design meth-
odology for deployable arches of arbitrary curvature, accounting also for the discrete joint size, has been
proposed, thus overcoming a previous disadvantage of such structures that could be only flat or curved
with constant curvature. The methodology has been applied successfully for the geometric design of a semi-
elliptical arch. Verification of deployability has been achieved by the construction of a small-scale physical
model as well as by deployment simulation with the finite element method. A preliminary structural design
indicates the overall feasibility of such an arch with a span of 13.6 m, subjected to dead, snow and wind
loads.
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