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Abstract

The deployable structures presented in this work are bi-stable in the sense of being self-standing and stress-free when

fully closed or fully deployed, but exhibit incompatibilities between the member lengths at intermediate geometric

configurations during the deployment process, which lead to the occurrence of second-order strains and stresses

resulting in a snap-through phenomenon that ‘‘locks’’ the structures in their deployed configuration. Until now the

geometric shapes that were possible in the deployed configuration were only flat or curved with constant curvature. This

limitation is addressed in the present paper by proposing a geometric design methodology for deployable arches of

arbitrary curvature, accounting also for the discrete joint size, and applying it successfully for the geometric design of a

semi-elliptical arch. The arch is then modeled with finite elements, and a geometrically non-linear analysis is performed

in order to verify the deployability feature. Further verification is provided by the construction of a small-scale physical

model. A preliminary structural design indicates the overall feasibility of the arch for short to medium spans and light

loads.
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1. Introduction

Deployable structures are prefabricated space frames consisting of straight bars linked together in the

factory as a compact bundle, which can then be unfolded into large-span, load bearing structural shapes by

simple articulation. Because of this feature they offer significant advantages in comparison to conventional,

non-deployable structures for a wide spectrum of applications ranging from temporary structures to the

aerospace industry, being mainly characterized by their feature of transforming and adapting to changing

needs.
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Because of their numerous advantages, deployable structures have been investigated, designed and

constructed by many engineers both for earth and space applications (Pinero, 1962; Zeigler, 1984; Rhodes,

1984; Merchan, 1987; Miura and Furuya, 1988; Escrig et al., 1989; Kwan and Pellegrino, 1991; Kuznetsov,

1991; You and Pellegrino, 1993; Pellegrino and Guest, 2000; You, 2000; Escrig and Brebbia, 2000; Furuya
and Kawasaki, 2000; Kawaguchi and Kondo, 2000; Langbecker and Albermani, 2001). The concept as well

as the geometric and structural characteristics of the type of deployable structures considered here are the

product of research work carried out since 1985 at the Massachusetts Institute of Technology, the Technion

in Israel and the National Technical University of Athens (Gantes, 1991; Gantes et al., 1991; Gantes et al.,

1994a; Gantes, 2000a), that succeeded in converting the primary ideas that were suggested earlier

(Krishnapillai and Zalewski, 1985) to a feasible type of structure. The main findings of this work are in-

cluded in a recent book (Gantes, 2001).

A fundamental design requirement of the structures investigated here is that they have two states in
which they are self-standing and stress-free, namely when they are fully closed or fully deployed, hence they

can be called bi-stable. However, at intermediate geometric configurations during the deployment process

incompatibilities between the member lengths lead to the occurrence of second-order strains and stresses

resulting in a snap-through phenomenon that ‘‘locks’’ the structure in its deployed configuration. The

structural response during deployment is, hence, characterized by geometric non-linearities, and simulation

of the deployment process is, therefore, a very important problem requiring sophisticated finite element

modeling (Gantes, 2000a). The material behavior, however, must remain linearly elastic, so that no residual

stresses reduce the load bearing capacity under service loads (Gantes, 1996).
From a structural point of view, deployable structures have to be designed for two completely different

loading conditions, under service loads in the deployed configuration, and during deployment. The

structural design process is very complicated and requires successive iterations to achieve some balance

between desired flexibility during deployment and desired stiffness in the deployed configuration (Gantes

et al., 1993a,b, 1994b; Gantes, 1997).

From a geometric point of view, the whole idea of this type of deployable structures is based on the so-

called scissor-like elements (SLEs), pairs of bars connected to each other at an intermediate point through a

pivotal connection which allows them to rotate freely about an axis perpendicular to their common plane
but restrains all other degrees of freedom, while, at the same time, their end points are hinged to the end

points of other SLEs. Several SLEs are connected to each other in order to form units with regular

polygonal plan views, for example triangular, square, or hexagonal units like the ones shown in Fig. 1. The

sides and radii of the polygons are SLEs. These polygons, in turn, are linked in appropriate arrangements

constituting deployable structures, which are either flat or curved in their final deployed configuration

(Fig. 2).

Geometric design is performed according to a set of geometric constraints resulting from the require-

ment of zero stresses at the two extreme configurations (Gantes, 1993; Gantes et al., 1993c,d, 1997). Stress-
free implies undeformed; therefore, the straightness of the bars in the deployed configuration is the starting

point for geometric design. Several constraint equations emanate from this condition. The way to derive

these equations is by looking at the development of adjacent scissor-like elements on a common plane and

applying basic geometric and trigonometric rules. The additional functional requirement that has to be

satisfied through geometric design is a stress-free state in the folded configuration. By translating this also

into a demand for straightness, one can obtain the so-called deployability constraint (Fig. 3), which requires

that the sums of the lengths between pivot and end node of the bars of SLEs that are connected to each

other are equal.
The geometric constraint equations are derived by applying the above rules for all scissor-like elements

of a unit, taking also symmetry or other special conditions into account. The formulation of a design

procedure based on these constraint equations must be preceded by the choice of design parameters. Such

parameters are usually some external dimensions of the units, which are often imposed by architectural



Fig. 2. Deployable structures in their deployed configuration.

Fig. 1. Plan views (left) and perspective views (right) of typical polygonal deployable units.
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requirements. The other quantities that define the geometry, such as member lengths or angles between the

members in the deployed configuration, are the unknown variables. Following this approach, one ends up

with a system of simultaneous non-linear equations that have to be solved numerically using an iterative

algorithm such as the Newton–Raphson method.



Fig. 3. Deployability constraint.
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This geometric design approach is initially followed at a polygonal unit level. Then, the additional
constraints for deployment compatibility between adjacent units, and how this affects the overall geometric

design process, must be accounted for. However, the snap-through-type deployable structures that had

been designed so far according to this approach suffered from a significant limitation. The geometric shapes

that were possible in the deployed configuration were only flat or curved with constant curvature (Fig. 2).

Other shapes, which might be structurally more efficient or architecturally more desirable, could not be

achieved by using these units.

In the present paper this limitation is addressed by unifying the two stages of the approach, namely

design of individual units and then connectivity between adjacent units, into one (Konitopoulou, 2001;
Gantes and Konitopoulou, 2002). Thus, the desired final shape of the deployed structure is taken into

account during geometric design of individual units. This increases the order of the resulting system of

simultaneous equations, and thus the computational effort, but seems to be the only way to design snap-

through-type deployable structures of arbitrary curvature. In addition, individual polygons are no longer

necessarily regular and identical to each other.

The geometric constraints according to this approach, proposed earlier by Konitopoulou (2001) and

Gantes and Konitopoulou (2002), are extended here in order to take the discrete joint size into account. The

steps of a corresponding systematic geometric design methodology are listed in detail. This methodology is
applied successfully for the geometric design of a semi-elliptical arch. A small-scale physical model of the

arch is constructed in order to demonstrate the correctness of the proposed approach. The arch is then

modeled with finite elements, and a geometrically non-linear analysis is performed in order to verify the

deployability feature. Extension of the methodology to other geometric shapes does not appear to present

any additional conceptual difficulties.
2. Geometric constraints for elliptical deployable arch

The proposed approach is applicable for the geometric design of any arch whose axis is described by an

equation of the type:
f ðx; yÞ ¼ 0 ð1Þ
For the sake of clarity and without loss of generality, the approach will be demonstrated for the case of a

semi-elliptical arch. Consider an ellipse that will be the axis of the arch, shown in Fig. 4 and described by

the equation:
x2

a2
þ y2

b2
¼ 1 ð2Þ
Furthermore, consider two more ellipses, having the same axes lengths a, b as the previous one, that are

placed on both sides of the original one (Fig. 5) at a specific distance that will be defined later on. Thus, the

upper surface of the elliptical arch is created. Then, this surface is divided into consecutive segments, having
the same arch length (Fig. 6). Because of the elliptical shape, the chords of the respective arch segments are



Fig. 5. Upper surface of elliptical arch.

Fig. 4. Axis of elliptical arch.

Fig. 6. Sub-division of upper surface of elliptical arch in sub-planes.
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of different length, called g2. The distance g1 between the ellipses placed on both sides of the axis is defined

as equal to the average of all g2. With the subdivision of the upper elliptical surface, an inscribed convex

polyhedron is created. Each sub-plane will constitute the top view of a single structural deployable unit.



Fig. 7. Location of first SLE.

Fig. 8. Location of second SLE.
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Thus, the geometric design of the elliptical arch begins with the first structural unit. Some geometric
parameters, such as the total span of the arch and the size of the individual unit are known, because they are

imposed by architectural requirements. Assuming that the dimensions of the elliptical surface are known,

the coordinates of points A1 and B1 (Fig. 7), defined as the intersection of the two ellipses with the xz plane,
can be chosen.

If S is the center of the ellipse, then the points A2 and B2 belong to lines SA1 and SB1 and are at distance h1
from A1 and B1, respectively, where h1 is the thickness of the structural unit (Fig. 7). Points C1 and D1 are on

the elliptical surface and more specifically on the two edge ellipses. Their distance from B1 and A1,

respectively, is g2 (Fig. 8). Similarly, points C2 and D2 are at distance h2 from C1 and D1, respectively. The
point O1, which is the peak of the polygonal unit, is on the axis of the elliptical arch and more specifically in

the middle of the unit’s arch segment (Fig. 9). The same holds for point O2, and the distance between O1

and O2 is h3. The dimensions h2 and h3 are not design parameters, but are derived from the solution of the

geometric design problem for the structural unit. Thus, the solution of the structural unit starts with the

coordinates of points A1, A2, B1, B2, C1, D1, O1 and S as known parameters. The coordinates of points C2,

D2, and O2 are unknown. The complete first structural unit is shown in Fig. 10.

2.1. Geometric constraints assuming idealized joints

For the geometric design of the elliptical arch several different types of SLEs are used, contrary to the
case of curved structures with constant curvature. In particular, the outer planes of the unit A1A2B1B2 and



Fig. 9. Location of points O1 and O2.

Fig. 10. First basic square unit.
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C1C2D1D2 are determined by symmetrical but different to each other SLEs, while the planes A1A2D1D2 and

B1B2C1C2 are defined by non-symmetrical SLEs, which are the same for both of them (Fig. 11). Similarly,

the inner planes O1O2A1A2, O1O2B1B2, O1O2C1C2 and O1O2D1D2 are illustrated in Fig. 12. Assuming that all

the above are known, the angles u1, u2, u3, x1, x2, w1, w2, w3, w4, w5, w6 and the lengths L1, L2, which are

defined in Figs. 11 and 12, can be derived. L1 and L2 are found as the distances between two points with

known coordinates, for example:
L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxO1 � xA1Þ2 þ ðyO1 � yA1Þ2 þ ðzO1 � zA1Þ2

q
ð3Þ
For the angles the cosines law is used. For example angle u1 is obtained from the equation:
ðA1B1Þ2 ¼ ðA1SÞ2 þ ðB1SÞ2 � 2ðA1SÞðB1SÞ cosu1 ð4Þ

In order to derive the geometric constraints for the units, let us consider the development of two SLEs on a

common plane. Two of them are shown indicatively in Fig. 13. The following equations can be written for

this problem:

Foldabillity constraints:

• Between outer SLEs:
e1 þ f1 ¼ e3 þ f3; e2 þ f2 ¼ e4 þ f4 ð5Þ



Fig. 11. Outer SLEs.
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• Between inner SLEs:
a1 þ b1 ¼ a2 þ b2 ð6Þ

• Between inner and outer SLEs:
e1 þ f1 ¼ c1 þ d1; e2 þ f2 ¼ c2 þ d2 ð7Þ
Sines law:

• For the outer SLEs:
e1
f1

¼ sin c1
sin e1

;
e2
f2

¼ sin c2
sin e2

;
e3
f3

¼ sin c3
sin e3

;
e4
f4

¼ sin c4
sin e4

ð8Þ



Fig. 12. Inner SLEs.
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• For the inner SLEs:
a1
b1

¼ sin h1
sin a1

;
c1
d1

¼ sin d1
sin f1

;
a2
b2

¼ sin h2
sin a2

;
c2
d2

¼ sin d2
sin f2

ð9Þ
Length projections in the radial direction:

• For the outer SLEs:
e1 cos e1 þ f1 cos c1 ¼ h1; e2 cos e2 þ f2 cos c2 ¼ h2
e3 cos e3 þ f3 cos c3 ¼ h1; e4 cos e4 þ f4 cos c4 ¼ h2

ð10Þ
• For the inner SLEs:
a1 cos a1 þ b1 cos h1 ¼ h3; c1 cos f1 þ d1 cos d1 ¼ h1
a2 cos a2 þ b2 cos h2 ¼ h3; c2 cos f2 þ d2 cos d2 ¼ h2

ð11Þ



Fig. 13. Adjacent outer and inner SLEs.
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Length projections in the tangential direction:

• For the outer SLEs:
2f1 sin
e1 þ c1

2

� �
¼ g1; 2f2 sin

e2 þ c2
2

� �
¼ g1; f3 cosðw1 � c3Þ þ f4 cosðw2 � c4Þ ¼ g2

ð12Þ

• For the inner SLEs:
b1 cosðw3 � h1Þ þ c1 cosðw4 � f1Þ ¼ L1; b2 cosðw5 � h2Þ þ c2 cosðw6 � f2Þ ¼ L2 ð13Þ
Concurrency of lines O1O2, A1A2, B1B2:
e3 þ c3 ¼ e4 þ c4; a1 þ h1 ¼ d1 þ f1; a2 þ h2 ¼ d2 þ f2; c1 þ u1 ¼ e1
c2 þ u2 ¼ e2; c4 þ u3 ¼ e3; f1 þ x1 ¼ a1; f2 þ x2 ¼ a2

ð14Þ
The above equations constitute a system of 34 equations for 34 unknowns, the 16 member lengths (e1, f1, e2,
f2, e3, f3, e4, f4, a1, b1, c1, d1, a2, b2, c2, d2), the 16 angles (e1, c1, e2, c2, e3, c3, e4, c4, a1, h1, d1, f1, a2, h2, d2, f2)
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and the unit dimensions h2, h3. As already mentioned, the structural thickness h1 is a known design

parameter. As far as the solution of the above system is concerned, Eqs. (8a), (10a), (12a) and (14d) are

linearly independent and they can be solved as a 4 by 4 system. Since all coordinates of the nodes of the first

SLE (A1A2B1B2) are known, the lengths e1, f1 and the angles e1, c1 can thus be derived. Then, a system of 30
non-linear equations for 30 unknowns remains to be solved numerically.

2.2. Geometric constraints taking joint dimensions into account

The derivation of geometric constraints and formulation of geometric design procedures in the previous

section was based on the assumption that the hubs are ‘perfect’, dimensionless hinges. In reality, however,

they have some discrete dimensions, which should be taken into account during geometric design, in order

to avoid geometric non-fit of the members, assembling problems, and violation of the desired stress-free
state in the folded and deployed configuration. The type of circular joints with radius r, used in our

experimental models, is shown in Fig. 14. It should be noted that the angles between planes of adjacent

SLEs remain unchanged during the deployment process, thus the hinges only have to accommodate axial

forces of the members converging into them.

In order to derive the geometric constraints with discrete joint dimensions, we consider again the

development of outer (Fig. 15) and inner (Fig. 16) SLEs on a common plane. Furthermore, we consider the

development of adjacent SLEs on a common plane. The geometric constraints differing from those that

were derived earlier for idealized joints concern the length projections in the tangential direction:

• For the outer SLEs, Eq. (12) should be replaced by:
2f1 sin
e1 þ c1

2

� �
þ 2r cos

u1

2
¼ g1; 2f2 sin

e2 þ c2
2

� �
þ 2r cos

u2

2
¼ g1

f3 cosðw1 � c3Þ þ f4 cosðw2 � c4Þ þ rðsinw1 þ sinw2Þ ¼ g2
ð15Þ
• For the inner SLEs, Eq. (13) should be replaced by:
b1 cosðw3 � h1Þ þ c1 cosðw4 � f1Þ þ rðsinw3 þ sinw4Þ ¼ L1

b2 cosðw5 � h2Þ þ c2 cosðw6 � f2Þ þ rðsinw5 þ sinw6Þ ¼ L2

ð16Þ
Fig. 14. Real joint and corresponding model.



Fig. 15. Outer SLEs accounting for joint dimensions.
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3. Geometric design

The detailed application of the proposed design methodology for each single unit consists of the fol-

lowing steps:

ii(i) The coordinates of A1 and B1 are considered as known. These points, as illustrated in Fig. 7,

belong to the elliptical surface and more specifically to the edge ellipses on both sides of the axis.

The x coordinate of A1, B1 is equal to the dimension a of the ellipse and the y coordinate is equal
to zero.

i(ii) The point S (0,0,0) is the center of the ellipse.

(iii) The coordinates of C1 and D1 are derived by the subdivision of the elliptical surface and belong to the

edge ellipses.



Fig. 16. Inner SLEs accounting for joint dimensions.
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(iv) The point O1 belongs to the elliptical surface and more specifically it is located in the middle of the arch

of each single unit. The coordinates of O1 are derived from the following system of two simultaneous

equations:
x2O1
a2

þ y2O1
b2

¼ 1; yO1 ¼ tan
k
2

� �
� xO1 ð17Þ
where k=2 is the angle of direction of O1 (Fig. 9).
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iii(v) Considering all the above as known parameters, the values of lengths L1, L2 and angles u1, u2, u3, x1,

x2, w1, w2, w3, w4, w5, w6 can be derived by equations similar to (3) and (4).

ii(vi) Then, the values of lengths e1, f1 and angles e1, c1 are derived from the linearly independent simulta-

neous equations (8a), (10a), (14d) and (15a).
i(vii) Next, the system of 30 non-linear simultaneous equations (5a,b), (6), (7a,b), (8b–d), (9a–d), (10b–d),

(11a–d), (14a–c,e–h), (15b,c), (16a,b) is solved, in order to obtain the remaining unknown lengths e2,
f2, e3, f3, e4, f4, a1, b1, c1, d1, a2, b2, c2, d2, the angles e2, c2, e3, c3, e4, c4, a1, h1, d1, f1, a2, h2, d2, f2 and
the parameters h2, h3.

(viii) Considering the coordinates of the upper nodes and the respective thickness of each unit as known,

the coordinates of the lower nodes can then be calculated.

ii(ix) Finally for each point Ai, Bi, Ci and Di the coordinates of the discrete joints Aia, Bia, Cia and Dia, shown

in Fig. 17, can be obtained by solving corresponding systems of three simultaneous equations, for
example for point A1a:
xA1a yA1a zA1a 1

xA1 yA1 zA1 1

xO1 yO1 zO1 1

xS yS zS 1

����������

����������
¼ 0

‘A1ðxA1a � xA1Þ þ mA1ðyA1a � yA1Þ þ nA1ðzA1a � zA1Þ ¼ 0

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxA1 � xA1aÞ2 þ ðyA1 � yA1aÞ2 þ ðzA1 � zA1aÞ2

q

ð18Þ
The first of Eqs. (18) specifies that A1a belongs in the plane defined by points A1, O1 and S. Eq. (18b)
indicates that A1a belongs in the plane perpendicular to line A1S at point A1. The values ‘A1, mA1, nA1 are
the known cosines of direction of line A1S. Finally, Eq. (18c) denotes that the distance between A1a and

A1 is equal to the known radius r of the circular node.

The initial values needed for the iterative solution of the 30 simultaneous non-linear equations can be

obtained by starting with the geometric design of a semi-circular arch (a ¼ b), and then reducing radius b
gradually and using the solutions of the previous step as trial values for the next step.
4. Application

The above process has been applied for the geometric design of the semi-elliptical arch shown in Fig. 18,

with a span of 13.622 m, a height of 6.130 m and a structural thickness of 0.811 m at the two supports. The

main objective of this exercise was to confirm the correctness of the geometric constraint equations and the
proposed geometric design approach, and to verify the deployability potential of a deployable arch with

varying curvature. Design of an optimized real structure, able to withstand realistic loads was not sought at

this stage, thus several simplifying assumptions have been adopted. Hence, finite element analysis of the

deployed arch under service loads was only performed for reasons of completeness and in order to show

that the resulting deflections and member forces are of an order of magnitude acceptable for real appli-

cations. Structural optimization in order to achieve a better balance between the response during

deployment and under service loads will be carried out in future work. The deployability feature of the arch

has been verified both by constructing a small-scale physical model and by finite element analysis. This
example is presented in detail next.



Fig. 17. Adjacent outer and inner SLEs accounting for joint dimensions.
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4.1. Geometric design

Assuming that the radii a, b of the ellipse are known (a ¼ 6:811 m, b ¼ 0:90 � 6:811 ¼ 6:130 m), the

length of the semi-elliptical arch is found equal to 20.3418 m. The arch is divided into eight segments with

the same length, 2.54272 m. The length of each respective chord is different and more specifically equal to

2.52103, 2.52479, 2.52855 and 2.53049 m for the first, second, third and fourth unit, respectively. This value

is the g2-parameter for each unit. The g1-parameter is common for all units and equal to the average of the

four g2 (g1 ¼ 2:52621 m).
In order to obtain initial values for the numerical iterative solution of the geometric constraint equa-

tions, the geometric design of a semi-circular arch is performed first. The arch consists of eight units and the

values of radius and structural thickness are R ¼ 6:811 m and h1 ¼ 0:811 m, respectively. Then, the radius b
of the ellipse is gradually reduced in steps of 2% up to 10%, in comparison with the radius a. The geometric



Fig. 18. Semi-elliptical arch.
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quantities of each step are used as initial values for the iterations of the next step. Considering also a hub

radius r ¼ 0:12 m, the geometric design of the desired arch of semi-elliptical shape is achieved. The per-

tinent geometric quantities of the four units are listed in Table 1.
4.2. Physical model

The geometric design methodology has been verified through the construction of a physical model in
scale 1:20, shown in Fig. 19 in some successive deployment stages. The members of the arch are made of

straws, the outer hubs of circular wire rings and the pivotal connections of metal pins. One very interesting

issue arising for the deployment of such structures, namely how the difference in geometry between adjacent

units affects the way and the sequence in which the individual units undergo snap-through and how they

interact during that process, can be qualitatively observed by means of this model. ‘‘Flatter’’ units, char-

acterized by b1=a1 and b2=a2 ratios close to 1, are softer and tend to buckle first. This issue will be further

explored in future work, and will be utilized to control better the deployment intensity, and to optimize the

overall design.
4.3. Material and cross-section characteristics

The selection of suitable materials and cross-sections for the members must be such that several design

objectives are met. Namely, the stiffness of the deployed arch under service loads must be satisfactory, with

specific deflection limits depending on the intended use. This can be achieved by providing sufficient

intensity of snap-through during deployment, but without requiring too much energy or allowing material

non-linearities. At the same time, a lightweight material improves handling and transportation.

In order to satisfy all the above requirements, several iterations were needed. They resulted in choosing
low-density polyethylene (Young’s modulus E ¼ 150 MPa, yield stress ry ¼ 20 MPa) for the outer SLEs,

and acrylic (E ¼ 80 MPa, ry ¼ 15 MPa) for the inner SLEs. The hubs are made also of low-density

polyethylene. As far as the cross-sections of the members are concerned, the outer SLEs use a rectangular

hollow section of 150 mm by 60 mm with a 15 mm wall thickness and the inner SLEs, which are mainly

responsible for controlling the snap-through intensity, a rectangular hollow section of 110 mm by 50 mm

with a 15 mm wall thickness (Fig. 20).

Based on the above selections of materials and cross-sections, the deployability of the structural unit was

feasible, but the response of the structure under some service load combinations was not satisfactory due to
large deflections under vertical loads. This was solved by placing connection rods between the upper and



Table 1

Geometric quantities of the prototype arch

First unit Second unit Third unit Fourth unit

g1 m 2.52621

g2 2.52103 2.52479 2.52855 2.53049

k rad 0.374887 0.38409 0.399579 0.41224

u1 0.366736 0.372327 0.386089 0.40034

u2 0.372327 0.386089 0.40034 0.406418

u3 0.368443 0.377185 0.391844 0.403778

x1 0.261464 0.266665 0.276918 0.286327

x2 0.263409 0.271454 0.281865 0.288429

w1 1.34646 1.28854 1.28499 1.33261

w2 1.42669 1.47586 1.46476 1.4052

w3 1.51961 1.566 1.57154 1.537

w4 1.36052 1.30893 1.29314 1.31826

w5 1.46175 1.43073 1.44141 1.48434

w6 1.41643 1.43941 1.41832 1.36882

L1 m 1.79298 1.79833 1.79999 1.79517

L2 1.78748 1.78282 1.78183 1.78696

h1 0.811 0.816955 0.795216 0.769353

h2 0.816955 0.795216 0.769353 0.756161

h3 0.307553 0.336339 0.330884 0.265407

e1 1.06408 1.06167 1.05685 1.05244

f1 1.22187 1.22318 1.21925 1.21465

e2 1.06167 1.05685 1.05246 1.05074

f2 1.22318 1.21925 1.21464 1.21227

e3 1.0726 1.03506 1.0249 1.03953

f3 1.21335 1.24978 1.2512 1.22756

e4 1.05359 1.08391 1.08449 1.06183

f4 1.23125 1.19218 1.1826 1.20118

a1 0.403431 0.41756 0.420026 0.408255

b1 0.456396 0.499245 0.502075 0.406734

c1 1.18608 1.15897 1.15589 1.25091

d1 1.09986 1.12588 1.12021 1.01618

a2 0.408081 0.403212 0.403327 0.400925

b2 0.451747 0.513592 0.518775 0.414064

c2 1.19916 1.12059 1.11178 1.22747

d2 1.08568 1.1555 1.15531 1.03554

e1 rad 1.39784 1.39792 1.41385 1.43193

c1 1.03111 1.02559 1.02776 1.03159

e2 1.39792 1.41385 1.43193 1.4406

c2 1.02559 1.02776 1.03159 1.03418

e3 1.37647 1.46606 1.49799 1.46648

c3 1.04986 0.967822 0.955948 1.00197

e4 1.41831 1.34501 1.34779 1.40575

c4 1.00802 1.08888 1.10615 1.0627

a1 1.37184 1.43425 1.44897 1.23639

h1 1.04817 0.976598 0.97929 1.24155

d1 1.30963 1.24326 1.25621 1.52788

f1 1.11037 1.16758 1.17205 0.950064

a2 1.34154 1.52681 1.55949 1.28981

h2 1.07524 0.901606 0.890084 1.18676

d2 1.33865 1.17306 1.17195 1.47519

f2 1.07813 1.25535 1.27762 1.00139
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Fig. 19. Successive deployment stages of the physical model.
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the lower nodes of each unit (Fig. 21a), thus enhancing the stiffness of the deployed structure. This
intervention violates the design target of having exactly the same structural system for the folded and the

deployed structure (with the exception of different boundary conditions), and increases slightly the time and

effort required for deployment and disassembling. But the intervention related to the placement of the

connection rods is considered minimal and is still a good compromise between ease of deployment and

desired structural characteristics.



Fig. 21. Means to increase stiffness of the deployed arch.

Fig. 20. Cross-sections of the outer and inner SLEs.
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In cases of maximum snow load there were further violations of the serviceability limits (deflections

smaller than span length over 250), that can be prevented by supporting (for example by means of vertical

posts) the two lower nodes at the center of the arch (Fig. 21b), thus reducing deflections by 50%. This will
be needed only if the structure is to be used in climates justifying such loads, and only during the rare events

when such loads will be indeed realized. Even then, only serviceability and not strength will be violated if
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the supporting posts are not put into place. Thus, the undesirable presence of the posts in the interior of the

structure will be needed only in very few cases.

Hence, it is considered that the structure demonstrated a satisfactory behavior during both stages of

analysis that will be described next.
4.4. Finite element analysis

For the analysis the finite element program MSC/NASTRAN 4.0 for Windows was used. The members

of inner and outer SLEs were modeled with beam elements, and the hubs were modeled as equivalent grids

of beam elements. The static analysis of the structure consisted of two stages:
(i) Linear analysis of the arch in the deployed configuration, in order to obtain displacements and stresses

under service loads.

For this analysis the arch was considered pinned at both ends. The loads that were taken into account

for the linear analysis are the dead weight of the structure, snow with 0.3 m thickness and a 0.5 kN/m2 wind

pressure, using tributary areas to distribute them on the individual arch members. Indicative results of

deformation (maximum total translation 23.5 mm) and axial forces in the members (maximum tension

13.69 N, maximum compression 14.09 N) are shown in distorted scale in Fig. 22 for the case of simulta-

neous action of dead, snow and wind loads. The maximum stresses are well below the yield stresses of the
respective materials, while the maximum deflections under dead loads are marginally within the service-
Fig. 22. Deformation and axial forces for load combination (dead+ snow+wind).
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ability limits of span length over 250 without vertical posts, but require the posts in order to satisfy ser-

viceability for snow and wind loads.

(ii) Non-linear analysis of each single structural unit, in order to verify deployability and to compute stresses

during deployment as well as the required deployment load.

Taking advantage of the fact that deployability of the whole arch was verified by means of the physical

model, numerical deployment simulation was carried out for each individual unit separately, as deployment

stresses are deformation-induced and can be predicted very accurately in this manner (Gantes, 2001).

During this process the members are subjected to axial forces and bending moments and, thus, they develop

normal longitudinal stresses. The lower center node of the unit was assumed as pinned and a controlled
Fig. 23. Successive deformed configurations as obtained from finite element simulation of dismantling.
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displacement was imposed on the upper center node, in the direction defined by the upper and lower center

nodes. All other nodes were free except for prevention of rigid body rotation. Full Newton–Raphson

iterations were carried out in 60 steps with 150 maximum iterations per step. Dismantling was simulated

instead of deployment due to improved performance of the non-linear iterative algorithm.
Fig. 23 shows successive dismantling stages as obtained from the above analysis. The deformed con-

figuration is shown with thick continuous line and the undeformed one with thin dotted line. Fig. 24

illustrates the corresponding non-linear load–displacement path. The quantity d in the horizontal axis is the

relative vertical displacement between upper and lower center nodes, while the load P in the vertical axis is

the external load required for deployment, obtained as the reaction corresponding to the imposed dis-

placement. The snap-through nature of the response is clearly indicated.

The maximum value of the required deployment load, obtained from numerical analysis as equal to

approximately 5 kN, indicates the need for mechanical equipment in order to realize deployment. This is
justified, taking into account the size of the structure and the significant service loads employed for analysis

in the deployed configuration, however, a more favorable selection of materials, member cross-sections and

required deployment loads is expected to be possible by means of structural optimization (Gantes, 2000a,b).

The maximum stresses that develop in the members of inner SLEs during deployment are approximately

equal to 10.5 MPa, which is 70% of the yield stresses of 15 MPa. The outer SLEs are not stressed sig-

nificantly during deployment, as expected also from previous experience with this type of structures

(Gantes, 2001). Thus, the design criterion––that the material remains within the elastic range during

deployment––is satisfied.
An interpretation of Fig. 24 can also lead to a better understanding of the bi-stable nature of deployable

structures of this type. The geometric incompatibilities between member lengths during the deployment

process leads to a highly non-linear behavior and ultimately to snap-through. The strain energy stored in
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Fig. 24. Load–displacement path as obtained from finite element simulation of dismantling.
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the members prior to snap-through and released afterwards, acts as a form of prestressing and locks the

structure in its deployed configuration. Its stiffness is further enhanced by employing in the deployed

configuration different boundary conditions from those during deployment (and in some cases additional

members as well), so that unlocking is prevented under service loads. Dismantling is possible by removing
the additional boundary conditions (and the additional members) and applying opposite loads to those

needed for deployment. Thus, two distinct, stable phases exist, the folded and the deployed one, each

characterized by different geometry, loading and boundary conditions.
5. Summary and conclusions

Deployable structures that are self-standing and stress-free when fully closed or fully deployed but ex-

hibit incompatibilities between the member lengths at intermediate geometric configurations during the

deployment process, which lead to second-order strains and stresses and a snap-through phenomenon that

‘‘locks’’ the structures in their deployed configuration have been investigated. A geometric design meth-

odology for deployable arches of arbitrary curvature, accounting also for the discrete joint size, has been

proposed, thus overcoming a previous disadvantage of such structures that could be only flat or curved

with constant curvature. The methodology has been applied successfully for the geometric design of a semi-
elliptical arch. Verification of deployability has been achieved by the construction of a small-scale physical

model as well as by deployment simulation with the finite element method. A preliminary structural design

indicates the overall feasibility of such an arch with a span of 13.6 m, subjected to dead, snow and wind

loads.
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